Finite Control Set Model Predictive Control in Power Converters
نویسنده
چکیده
This study presents a detailed description of a cost function-based predictive control strategy called Finite Control Set Model Predictive Control (FCS-MPC) and its applications to the control of power electronics converters. The basic concepts, operating principles and general properties of this control technique have been explained. The analysis is performed on two different power converter topologies: traditional three-phase Voltage Source Inverter (VSI) and Modular Multilevel Converter (MMC). In order to verify its capabilities MATLAB (SIMULINK) simulations have been performed for both cases. The design procedure of FCS-MPC is based on first, a discrete-time model of the system that is used to predict the behavior of the controlled variables for all the possible switching states of the converter and second, a cost function that should be defined according to the control requirements of the system. The switching state that minimizes the cost function will be selected to be applied to the converter at the next sampling time. FCS-MPC is a powerful control technique that has several advantages such as high accuracy, flexibility and stability, easy implementation, simple and understandable concepts, but the most important and exclusive feature of this control strategy is the inclusion of nonlinearities and system constraints in the cost function. As a result, all the control requirements can be considered by one controller at the same time. There are important factors, regarding FCS-MPC, that have been investigated in this study, such as: • the effect of the cost function definition and the application of weighting factors • the effect of discretization method and system model accuracy on the controller performance • the effect of measurement errors on the controller robustness • dynamic behavior of the controller and its response speed when a disturbance occurs in the system • reference tracking capability of the controller
منابع مشابه
Power injection of renewable energy sources using modified model predictive control
This paper presents a simple model predictive control (MPC) approach to control the power injection system (PIS) for renewable energy applications. A DC voltage source and a single-phase inverter that is connected to the grid by an LCL filter form the PIS. Grid voltage is considered a disturbance for the system. For eliminating this disturbance, a modified model is proposed. It is usual to ...
متن کاملPower injection of renewable energy sources using modified model predictive control
This paper presents a simple model predictive control (MPC) approach to control the power injection system (PIS) for renewable energy applications. A DC voltage source and a single-phase inverter that is connected to the grid by an LCL filter form the PIS. Grid voltage is considered a disturbance for the system. For eliminating this disturbance, a modified model is proposed. It is usual to ...
متن کاملImplementation of Low-Cost Architecture for Control an Active Front End Rectifier
In AC-DC power conversion, active front end rectifiers offer several advantages over diode rectifiers such as bidirectional power flow capability, sinusoidal input currents and controllable power factor. A digital finite control set model predictive controller based on fixed-point computations of an active front end rectifier with unity displacement of input voltage and current to improve dynam...
متن کاملModel Predictive Control of a BCDFIG With Active and Reactive Power Control Capability for Grid-Connected Applications
Recently, Brushless Cascaded Doubly Fed Induction Generator (BCDFIG) has been considered as an attractive choice for grid-connected applications due to its high controllability and reliability. In this paper, a Finite Control Set Model Predictive Control (FCS-MPC) method with active and reactive power control capability in grid-connected mode is proposed for controlling the BCDFIG in a way that...
متن کاملModel Predictive Control of Distributed Energy Resources with Predictive Set-Points for Grid-Connected Operation
This paper proposes an MPC - based (model predictive control) scheme to control active and reactive powers of DERs (distributed energy resources) in a grid - connected mode (either through a bus with its associated loads as a PCC (point of common coupling) or an MG (micro - grid)). DER may be a DG (distributed generation) or an ESS (energy storage system). In the proposed scheme, the set - poin...
متن کاملTarisciotti, Luca and Zanchetta, Pericle and Watson, Alan James and Bifaretti, Stefano and Clare, Jon C. (2014) Modulated model predictive control for a 7-level
Multilevel Converters are known to have many advantages for electricity network applications. In particular Cascaded H-Bridge Converters are attractive because of their inherent modularity and scalability. Predictive control for power converters is advantageous as a result of its applicability to discrete system and fast response. In this paper a novel control technique, named Modulated Model P...
متن کامل